|
In computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes, which is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, “exponential” is used in two different meanings (linear exponential bounds for a constant ''c'', and full exponential bounds ), leading to two versions of the exponential hierarchy:〔Sarah Mocas, Separating classes in the exponential-time hierarchy from classes in ''PH'', Theoretical Computer Science 158 (1996), no. 1–2, pp. 221–231.〕〔Anuj Dawar, Georg Gottlob, Lauri Hella, Capturing relativized complexity classes without order, Mathematical Logic Quarterly 44 (1998), no. 1, pp. 109–122.〕 *EH is the union of the classes for all ''k'', where for some constant ''c'' with a oracle). One also defines . An equivalent definition is that a language ''L'' is in if and only if it can be written in the form :: :where is a predicate computable in time (which implicitly bounds the length of ''yi''). Also equivalently, EH is the class of languages computable on an alternating Turing machine in time for some ''c'' with constantly many alternations. *EXPH is the union of the classes , where for some constant ''c'' with a oracle), and again if and only if it can be written as :: :where is computable in time for some ''c'', which again implicitly bounds the length of ''yi''. Equivalently, EXPH is the class of languages computable in time on an alternating Turing machine with constantly many alternations. We have E ⊆ NE ⊆ EH ⊆ ESPACE, EXP ⊆ NEXP ⊆ EXPH ⊆ EXPSPACE, and EH ⊆ EXPH. == References == 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「exponential hierarchy」の詳細全文を読む スポンサード リンク
|